Metabolic engineering of the tryptophan and phenylalanine biosynthetic pathways in rice
نویسندگان
چکیده
Aromatic amino acids function as building blocks of proteins and as precursors for secondary metabolism. To obtain plants that accumulate tryptophan (Trp) and phenylalanine (Phe), we modified the biosynthetic pathways for these amino acids in rice and dicot species. By introducing a gene encoding a feedback-insensitive anthranilate synthase (AS) alpha subunit, we successfully obtained transgenic plants that over-accumulated Trp. In addition, we found mutant calli that accumulated Phe and Trp at high concentrations. The causal gene (mtr1-D) encoded an arogenate dehydratase (ADT)/prephenate dehydratase (PDT) that catalyzes the final reaction in Phe biosynthesis. The wild-type enzyme was sensitive to feedback inhibition by Phe, but the mutant enzyme encoded by mtr1-D was relatively insensitive. Further, detailed analysis of downstream secondary metabolism from Trp in rice revealed that the Trp pathway, by producing serotonin, is involved in the defense response against pathogenic infection. Based on these findings we propose that the reactions catalyzed by AS and ADT are critical regulatory points in the biosynthesis of Trp and Phe, respectively. In addition, detailed characterization of transgenic lines that accumulate these aromatic amino acids provided new insights into the regulation of downstream secondary metabolism, translocation of aromatic amino acids, and effects of accumulation of aromatic amino acids on various agronomic traits.
منابع مشابه
Transcriptomic response of wolf spider, Pardosa pseudoannulata, to transgenic rice expressing Bacillus thuringiensis Cry1Ab protein
BACKGROUND Bacillum thuringiensis (Bt) toxin produced in Cry1-expressing genetically modified rice (Bt rice) is highly effective to control lepidopteran pests, which reduces the needs for synthetic insecticides. Non-target organisms can be exposed to Bt toxins through direct feeding or trophic interactions in the field. The wolf spider Pardosa pseudoannulata, one of the dominant predators in So...
متن کاملMutation of a rice gene encoding a phenylalanine biosynthetic enzyme results in accumulation of phenylalanine and tryptophan.
Two distinct biosynthetic pathways for Phe in plants have been proposed: conversion of prephenate to Phe via phenylpyruvate or arogenate. The reactions catalyzed by prephenate dehydratase (PDT) and arogenate dehydratase (ADT) contribute to these respective pathways. The Mtr1 mutant of rice (Oryza sativa) manifests accumulation of Phe, Trp, and several phenylpropanoids, suggesting a link between...
متن کاملIn silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma
As an aromatic and colorful plant of substantive taste, saffron (Crocus sativus L.) owes such properties of matter to growing class of the secondary metabolites derived from the carotenoids, apocarotenoids. Regarding the critical role of microRNAs in secondary metabolic synthesis and the limited number of identified miRNAs in C. sativus, on the other hand, one may see the point how the characte...
متن کاملThe Biosynthetic Pathways for Shikimate and Aromatic Amino Acids in Arabidopsis thaliana.
The aromatic amino acids phenylalanine, tyrosine and tryptophan in plants are not only essential components of protein synthesis, but also serve as precursors for a wide range of secondary metabolites that are important for plant growth as well as for human nutrition and health. The aromatic amino acids are synthesized via the shikimate pathway followed by the branched aromatic amino acid metab...
متن کاملEffect of phenylalanine and tryptophan on morphological and physiological characteristics in colocynth (Citrullus colocynthis L.)
The medicinal plant bitter apple belongs to Cucurbitaceae family. To study the effect of phenylalanine and tryptophan amino acids on morphological and physiological characteristics of Citrullus colocynthis L., an investigation was conducted according to a completely randomized block design with four treatments and three replications in University of Zanjan, Iran. The studied factors were consis...
متن کامل